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Abstract

A solution for the plate having a circular cavity subject to plane harmonic SH waves, horizontally
polarized shear waves, is presented in this paper. The method of solution involves series expansion of
incident and reflected SH waves from the cavity and two free surfaces in terms of cylindrical wave functions
and the image method, respectively. The image method proposed in this article is used to satisfy the
boundary condition of the traction free surfaces on the plate. Then, the boundary condition of the cavity is
applied to the solution having unknown coefficients. In order to simplify the problem, only the lowest mode
is taken into account in the plate. The results obtained in this study provide important information about
the behaviour of the plate near the discontinuity. Numerical results show that the distance between the
upper surface and the nearest cavity boundary (at y ¼ 0; r ¼ a) has primary effect. If the radius of the
cavity is relatively small compared with the thickness of the plate, the solutions approach the full space’s
solutions for the cavity, well-known in literature. Also, those solutions for the plate correspond to the
solutions of the plate without cavity. Dynamic stress concentration factors around the cavity and
displacements in the cross-section of the plate are obtained near the cavity for various wave numbers. It is
concluded that the presented solutions are partially analytical solutions, so they can be used for
construction and verification of approximate numerical techniques such as the boundary element method
(BEM), finite element method (FEM), finite difference method (FDM), etc.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

It is very important to determine the service life of the members of the structure such as beams,
columns, plates, shells, etc. They start to loose their strength in time depending on the
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environmental conditions and external loads. Some failures such as holes and cracks can also
occur inside the plate during the construction and loading, and these failures make the structure
weak. If a plate has discontinuities such as inclusions like rivets, cavities or cracks, it is definitely
vital to determine them and their effects. The stresses and displacements around and near the
discontinuities are very different from the design stresses and displacements. Therefore, it is
essential that they must be determined in case of dead loads, live loads, internal loads, seismic
waves, etc.
Most of the analyses in the literature are made for arbitrary shape discontinuities using

numerical methods [1]. Although these numerical methods are very useful tools for these kind of
problems, it is very important to determine the physical behaviour of the problem with analytical
method. Therefore, the aim of this paper is to give a partially analytical study for the plate having
a circular cavity excited by seismic SH waves, horizontally polarized shear waves, and to obtain
dynamic stress concentration factors around the cavity and the displacements in the cross-section
of the plate for the first mode. In the previous studies, similar solutions are obtained for the plate
and the half-space. The solutions of the plate having circular and arbitrary cavities using the
analytical and the numerical method are discussed [2–4], and the solutions of the half-space for
response of tunnels to incident SH waves [5] and diffraction of SH waves by subsurface inclusions
of arbitrary shape [6] are presented.

2. The model and formulation of the problem

The time harmonic SH waves propagating in an infinite plate of thickness H; having shear
modulus m and density r are considered. The plate occupies the region
�Noðx; zÞoN;�h2oyoh1 and contains a circular cavity (Fig. 1), where a is the radius of
the circular cavity, h1 and h2 are the ordinates of the upper surface, and the bottom surface,
respectively. wðx; yÞ is the wave amplitude in the z direction. Two co-ordinate systems are
required: A plane cartesian co-ordinate system and a plane polar co-ordinate system as shown in
Fig. 1. The z-axis may be assumed to be perpendicular to the plane defined by the two co-ordinate
systems.
The excitation in a plate of finite thickness in the case of harmonic SH waves is expressed as

shown below [7, p. 205]

wðiÞ ¼ f ðyÞ expðikx � iotÞ; ð1Þ
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Fig. 1. SH waves in a layer having a circular cavity.
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where wðiÞ; k and o show incident waves, wave number and angular frequency, respectively. This
solution must satisfy the following equation:

@2w

@x2
þ

@2w

@y2
¼

1

c22

@2w

@t2
; ð2Þ

where c2 ¼
ffiffiffiffiffiffiffiffi
m=r

p
is the shear wave velocity. The boundary conditions at y ¼ h1;�h2 are

syz ¼ m
@w

@y
¼ 0: ð3Þ

Substituting Eq. (1) into Eq. (2), f ðyÞ is found as

f ðyÞ ¼ w0 cosðqyÞ þ w1 sinðqyÞ; ð4Þ

where

q2 ¼
o2

c22
� k2: ð5Þ

The boundary conditions (3) yield

o2

c22
� k2 ¼

np
h1 þ h2

� �2

: ð6Þ

This result shows that except for n ¼ 0; the phase velocity depends on the wave number k: Thus
harmonic SH waves in an elastic layer are dispersive.
The harmonic incident waves of constant amplitude corresponding to the lowest mode ðn ¼ 0Þ

are considered, but the other modes might be taken into account too. A harmonic incident wave
of constant amplitude can be constructed by the help of a source far enough away.
In the case of n ¼ 0; Eq. (1) can be written as

wðiÞ ¼ w0 expðikx � iotÞ; ð7Þ

where w0 is the constant amplitude as shown in Fig 2. In the polar co-ordinates, Eq. (7) may be
rewritten as follows:

wðiÞ ¼ w0 exp ikr cos y�
p
2

� �
� iot

h i
: ð8Þ

In polar co-ordinate, the governing equation is
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¼

1

c22

@2w
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: ð9Þ
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Fig. 2. Displacement distributions in the plate without the cavity for the first, second and third mode in y2w plane.
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The boundary condition on the cavity is

srz ¼ m
@w

@r
¼ 0; ð10Þ

at r ¼ a:
Due to the cavity, incident waves, wðiÞ; are scattered by the cavity, the first scattered waves, wðsÞ;

are reflected by two surfaces, and the reflected waves, wðsrÞ; are infinitely scattered and reflected
many times by the cavity and the surfaces. The total displacement can be written as the sum of
incident waves, scattered waves and scattered-reflected waves due to the superposition principle

w ¼ wðiÞ þ wðsÞ þ wðsrÞ: ð11Þ

The solution of the first scattered waves by the cavity can be obtained as shown, using the wave
expansion method from Eq. (9) [5,6]

wðsÞ ¼ w0

XN
m¼0

Hð1Þ
m ðkrÞðAm cos myþ Bm sin myÞ; ð12Þ

where wðsÞ; Hð1Þ
m ; Am and Bm represent outgoing scattered waves satisfying Sommerfield radiation

condition, first type Hankel function and unknown coefficients, respectively. The time factor,
expð�iotÞ; is implied and omitted in this and later formulations.
The solution of the scattered-reflected waves are naturally similar to the scattered waves. The

surface boundary conditions in Eq. (3) are satisfied using the image method [7, p. 113].
The idea of the imaging primary cavity, which corresponds to the source, with respect to the

traction free surfaces can also be used to determine the Green’s function for a region bounded by
two planes. In this case we take the image of the primary cavity with respect to both y ¼ h1 and
y ¼ �h2: The image with respect to y ¼ �h2 destroys, however, the symmetry of the primary
cavity and its image with respect to y ¼ h1; and thus another cavity must be added in the region
y > h1 to restore symmetry. The system of cavities must, however, also again be symmetric with
respect to y ¼ �h2; which establishes the need for another cavity at yo� h2; whereupon an
additional source must be applied at y > h1; and so forth. The co-ordinate systems are in the
opposite direction to keep the symmetry with respect to the surface of the plate in every second
image cavity. It is concluded that an infinite number of cavities is needed to satisfy the conditions
of Eq. (3). At a point �h2oyoh1; an infinite sequence of waves is observed. The waves, ðwðsÞ and
wðsrÞÞ are interpreted as the scattered waves and the subsequent reflections from the free surfaces.
The cavities and the pattern of the waves are shown in Fig. 3.
Ultimately, there is a solution in the form of a series: For the image cavities,

In the upper side of the plate for the first image cavity

wðs1Þðr1; y1Þ ¼ w0

XN
m¼0

Hð1Þ
m ðkr1ÞðAm cos my1 þ Bm sin my1Þ: ð13aÞ

In the lower side of the plate for the first image cavity

wðs
1� Þðr1� ; y1�Þ ¼ w0

XN
m¼0

Hð1Þ
m ðkr1�Þ ðAm cos my1� þ Bm sin my1�Þ: ð13bÞ
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In the upper side of the plate for the second image cavity

wðs2Þðr2; y2Þ ¼ w0

XN
m¼0

Hð1Þ
m ðkr2Þ ðAm cos my2 þ Bm sin my2Þ: ð13cÞ

In the lower side of the plate for the second image cavity

wðs
2� Þðr2� ; y2�Þ ¼ w0

P
N

m¼0 Hð1Þ
m ðkr2�Þ ðAm cos my2� þ Bm sin my2�Þ:

^
ð13dÞ

As a result, these solutions can be written in the series form:
In the upper side of the plate

wðsrÞðrd ; ydÞ ¼ w0

XN
m¼0

XN
d¼0

Hð1Þ
m ðkrdÞ ðAm cos myd þ Bm sin mydÞ: ð14aÞ
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Fig. 3. Application of the image method in the plate for SH waves.
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Likewise, in the lower side of the plate

wðsrÞðrd� ; yd�Þ ¼ w0

XN
m¼0

XN
d�¼0

Hð1Þ
m ðkrd�Þ ðAm cos myd� þ Bm sin myd�Þ; ð14bÞ

where d and d� represent the series index representing the image cavities. wðsrÞðrd ; yd Þ and
wðsrÞðrd� ; yd�Þ correspond to the outgoing scattered waves satisfying Sommerfield radiation
condition for image cavities.
Amplitude functions given by Eqs. (14a), (14b) in terms of polar co-ordinates ðrd ; ydÞ and

ðrd� ; yd�Þ differ from each other. Using the Graf’s addition theorem [8–11] in the interior regions
for image cavities, the solution of the scattered-reflected waves in terms of ðr; yÞ is given by

wðsrÞ ¼ w0

XN
m¼0

XN
d¼1

Jm ðkrÞ½ðAU
md þ AL

mdÞ cos myþ ðBU
md þ BL

mdÞ sin my�; ð15Þ

where AU
md ; AL

md ; BU
md and AL

md are related to P7
mnðC1Þ; Am and Bm:

For m ¼ 0; 1; 2;y; and d ¼ 1; 3; 5;y;

AU
md ¼

XN
n¼0

Pþ
mn½kðp H þ 2h1Þ�An;

AL
md ¼

XN
n¼0

ð�1Þnþm Pþ
mn½kðpH þ 2h2Þ�An;

BU
md ¼

XN
n¼0

P�
mn½kðpH þ 2h1Þ�Bn;

BL
md ¼

XN
n¼0

ð�1Þnþm P�
mn½kðpH þ 2h2Þ�Bn; ð16aÞ

where d represents the indices for the image cavities, and p ¼ d � 1; for m ¼ 0; 1; 2;y; and
d ¼ 2; 4; 6;y;

AU
md ¼

XN
n¼0

ð�1Þn Pþ
mn½dkH�An;

AL
md ¼

XN
n¼0

ð�1Þm Pþ
mn½dkH�An;

BU
md ¼

XN
n¼0

ð�1Þnþ1 P�
mn½dkH�Bn;

BL
md ¼

XN
n¼0

ð�1Þmþ1 P�
mn½dkH�Bn ð16bÞ

and

P7
mnðC1Þ ¼

em

2
H

ð1Þ
nþmðC1Þ7ð�1ÞmHð1Þ

n�mðC1Þ
h i

; ð17Þ

where m ¼ 0; 1; 2;y; and n ¼ 0; 1; 2;y; e0 ¼ 1; mX1 em ¼ 2; and C1 represents the argument.
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The incident waves for combining with scattered waves and scattered-reflected waves are
written in terms of cosine series

wi ¼ w0

XN
m¼0

emi
mJmðkrÞ cos my cos

mp
2

þ sin
mp
2

sin my
h i

; ð18Þ

where e0 ¼ 1; mX1; em ¼ 2:
For the final case, the whole displacement field is

w ¼w0

XN
m¼0

emi
mJmðkrÞ cos my cos

mp
2

þ sin
mp
2

sin my
h i

þ
XN
m¼0

Hð1Þ
m ðkrÞ½Am cos my

" 

þ Bm sin my� þ JmðkrÞ
XN
d¼1

ðAU
md þ AL

mdÞ cos myþ ðBU
md þ BL

mdÞ sin my
 �#!

: ð19Þ

With the substitution of Eq. (19) into Eq. (10), the following equations are obtained:

@Hð1Þ
m ðkrÞAm

@r

����
r¼a

þ
@JmðkrÞ

@r

XN
d¼1

ðAU
md þ AL

mdÞr¼a ¼ �emi
m cos

mp
2

@JmðkrÞ
@r

�����
r¼a

; ð20aÞ

@Hð1Þ
m ðkrÞBm

@r

����
r¼a

þ
@JmðkrÞ

@r

XN
d¼1

ðBU
md þ BL

mdÞr¼a ¼ �emi
m sin

mp
2

@JmðkrÞ
@r

�����
r¼a

: ð20bÞ

The constant coefficients Am and Bm are determined by solving these two equations. When these
coefficients are substituted into Eq. (19), total displacement field is determined.

3. Accuracy of the results

Numerical results are presented for the dimensionless absolute stresses and displacements in the
vertical cross-sections, and dynamic stress concentration factors, where s0; M; N; Z and D
represent the absolute value of the plate for the first mode without the cavity, maximum number
of the series, dimensionless frequency and the maximum number of the image cavities,
respectively. It is very difficult, sometimes even impossible to prove the convergence of the double
Bessel series. So, in this study, all presented numerical results are controlled by the boundary
conditions, which are satisfied approximately. For this purpose some examples are presented in
Figs. 4a–d. They show the accuracy of the solution for certain given parameters. Even if the
figures do not prove the convergence of the solution, the numerical results show that the boundary
condition on the plate is nearly satisfied according to the number of the cavities. The effects of the
image cavities on the real cavity and in its vicinity decrease depending on the distances between
the real cavity and the image cavities because of the attenuation of the elastic waves.
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4. Numerical results

Numerical results are illustrated in the vicinity of the cavity, i.e., in the interior region. In fact
this region is much more significant than farther regions from the cavity, since maximum stresses
and displacements occur in this region depending on the cavity.
For the numerical examples, a set of discrete dimensionless frequency, Z; is defined as [6]

Z ¼
ka

p
¼

oa

pc2
; ð21Þ

where Z is the dimensionless frequency.
Fig. 5a and b illustrates dimensionless absolute stresses, jsyz=s0j; versus y=a from 0 to h1=a at

x=a ¼ �1:5; 0 and 1.5 for h1=a ¼ 1:5 and 4 in case of h1=h2 ¼ 1; M ¼ N ¼ 12; D ¼ 1000 and
Z ¼ 0:5; h1=h2 ¼ 1=10; M ¼ N ¼ 12; D ¼ 400 and Z ¼ 0:5; h1=h2 ¼ 1; M ¼ N ¼ 22; D ¼ 1000;
Z ¼ 1; h1=h2 ¼ 1=10; M ¼ N ¼ 22; D ¼ 400 and Z ¼ 1; and the first mode solution of the plate.
The stresses are slightly smaller in the shadow side, at x=a ¼ 1:5; than that on the illuminated side,
at x=a ¼ �1:5: It can be seen also from the figures that stresses in the boundaries are almost zero.
Also the results depict that the stresses in this direction would be zero if the cavity was not there.
Fig. 6a and b shows dimensionless absolute displacements, jw=w0j; versus y=a from 0 to h1=a at
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Fig. 4. (a–d) Dimensionless absolute stresses, jsyz=s0j; on the upper free surface versus x=a:
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x=a ¼ �1:5; 0 and 1.5 for h1=a ¼ 1:5 in case of h1=h2 ¼ 1; M ¼ N ¼ 12; D ¼ 1000 and Z ¼ 0:5;
h1=h2 ¼ 1=10; M ¼ N ¼ 12; D ¼ 400 and Z ¼ 0:5; h1=h2 ¼ 1; M ¼ N ¼ 22; D ¼ 1000; Z ¼ 1;
h1=h2 ¼ 1=10; M ¼ N ¼ 22; D ¼ 400 and Z ¼ 1; and the first mode solution of the plate. It can be
seen from the figures that the displacements fluctuate near the one representing the first mode
solutions of the plate except for the cavity.
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Fig. 5. Dimensionless absolute stresses, jsyz=s0j; versus y=a from 0 to h1=a at x=a ¼ �1:5; 0 and 1.5 for (a) h1=a ¼ 1:5
and (b) h1=a ¼ 4:
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Without the cavity, absolute value of the stresses for incident waves in the x direction in the
plate for the first mode solution [12, p. 132] is

s0 ¼ w0mk; ð22Þ
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Fig. 6. Dimensionless absolute displacements, jw=w0j; versus y=a from 0 to h1=a at x=a ¼ �1:5; 0 and 1.5 (a) h1=a ¼ 1:5
and (b) h1=a ¼ 4:
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and with the cavity, the stress around the cavity is

syz ¼ � s0
1

ka

XN
m¼0

memi
mJmðkaÞ sin m y�

p
2

� �
þ
XN
m¼0

m Hð1Þ
m ðkaÞðAm sin my

"(

� Bm cos myÞ þ JmðkaÞ
XN
d¼1

½ðAU
md þ AL

mdÞ sin my� ðBU
md þ BL

mdÞ cos my�

#)
: ð23Þ

Fig. 7 shows a comparison of dynamic stress concentration factors, jsyz=s0; around the cavity
between the full-space (for which ka ¼ 0:1; 1 and 2 and M ¼ 10) and the plate (for which ka ¼ 0:1;
M ¼ N ¼ 8 and D ¼ 400; ka ¼ 1; M ¼ N ¼ 10 and D ¼ 400; ka ¼ 2; M ¼ N ¼ 12 and D ¼ 400)
for h1=h2 ¼ 1 and h1=a ¼ 1:5: They are all symmetric with respect to horizontal axis, x; and the
fluctuation starts as ka increases. When ka ¼ 0:1; the angular distribution is nearly the same as for
the static value which can be obtained ka-0 and is symmetric for both axes. However, the values
of concentration factor for ka ¼ 1 is higher on the illuminated side than on the shadow side for
the full-space contrary to the results of the plate. The values of the concentration factor for ka ¼ 2
for both full-space [12, p. 134] and the plate are higher on the shadow side than on the illuminated
side.

ARTICLE IN PRESS

Fig. 7. Comparison of the dynamic stress concentration factors, jsyz=s0j; around the cavity for h1=h2 ¼ 1 and

h1=a ¼ 1:5:
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Fig. 8 shows comparison of dynamic stress concentration factors, jsyz=s0j; around the cavity
between the full-space (for which ka ¼ 0:1; 1 and 2, and M ¼ 10 and the plate (for which ka ¼
0:1;M ¼ N ¼ 8 and D ¼ 400; ka ¼ 1; M ¼ N ¼ 10; D ¼ 400; and ka ¼ 2; M ¼ N ¼ 12 and
D ¼ 400) for h1=h2 ¼ 1 and h1=a ¼ 1:5: When ka ¼ 0:1; the angular distribution is nearly
the same for the static value and symmetric for both axes. The concentration factors for
both the full-space and the plate are slightly different from each other. The values of
the concentration factor for ka ¼ 1 is smaller on the illuminated side than on the shadow side for
the plate contrary to full-space results. The values of the concentration factor for ka ¼ 2 are
higher on the illuminated side than on the shadow side for the plate contrary to the full-space
results.
Fig. 9 shows comparison of dynamic stress concentration factors, jsyz=s0j; around the cavity

between the full-space (for which ka ¼ 0:1; 1 and 2, and M ¼ 10) and the plate (for which
ka ¼ 0:1; M ¼ N ¼ 8 and D ¼ 400; ka ¼ 1;M ¼ N ¼ 10; D ¼ 400; and ka ¼ 2; M ¼ N ¼ 12
and D ¼ 400) for h1=h2 ¼ 1 and h1=a ¼ 4: When ka ¼ 0:1; the angular distribution is nearly the
same for static value. The concentration factors are bigger at 90	pyp270	 than on the other side
(upper side) for the plate. In the upper side, the values of the concentration factor of the plate for
ka ¼ 2 are higher on the shadow side than on the illuminated side such as the results of the
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Fig. 8. Comparison of the dynamic stress concentration factors, jsyz=s0j; around the cavity for h1=h2 ¼ 1 and h1=a ¼ 4:
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full-space. In the lower side, the concentration factors of the plate for ka ¼ 1 and 2 are higher on
the shadow side than on the illuminated side.
Fig. 10 depicts dynamics stress concentration factors at r ¼ a; y ¼ 0 ðh1=h2 ¼ 1Þ versus

dimensionless wave numbers, ka; for h1=a ¼ 1:5; 4 and full-space. The results show that when ka
increases, the values of the dynamic stress concentration are approaching each other for both full-
space and the plate.

5. Conclusions

The purpose of this study is to obtain some numerical results for the plate having circular cavity
exited by plane harmonic SH waves, well-known in literature. The numerical results are partially
analytic, so they may guide the results of numerical methods such as BEM, FEM, FDM, etc.
These results might help to solve and understand more complicated problems which are important
in engineering and applied sciences.
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Fig. 9. Comparison of the dynamic stress concentration factors, jsyz=s0j; around the cavity between the full-space (for

which ka ¼ 0:1; 1, and 2, and M ¼ 10) and the plate (for which ka ¼ 0:1; M ¼ N ¼ 8 and D ¼ 400; ka ¼ 1; M ¼
N ¼ 10; D ¼ 400; and ka ¼ 2; M ¼ N ¼ 12 and D ¼ 400) for h1=h2 ¼ 1=10 and h1=a ¼ 4:
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